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Abstract—This paper presents an experimental study on the 

performance of a Pose Estimation (PE) method based on a 3D 
time-of-flight camera��the SwissRanger SR4000. The PE 
method tracks the visual features in the camera’s intensity 
image and computes the camera’s pose change from the 3D data 
of the matched features. To attain a small PE error, the noises of 
the sensor’s intensity and range data are analyzed and a 
Gaussian filter is applied to reduce the noises. The statistical 
property of the filtered data is then characterized and the result 
is used to determine the minimum number of 3D data points 
that are required for a satisfactory PE accuracy. Two feature 
extractors, the SIFT (Scale Invariant Feature Transform) and 
SURF (Speed Up Robust Features) extractors, are used for the 
PE method and their performances are compared in term of PE 
error and computational time.  

Experimental results with various combinations of rotation 
and translation movements demonstrate that the SIFT extractor 
outperforms the SURF extractor in both PE accuracy and 
repeatability. 

 Index Terms - Pose Estimation, Time-of-Flight Camera, 
Feature Descriptor, Visual Odometry.  

I. INTRODUCTION 
 Pose Estimation (PE) is an essential capability for a mobile 
robot to perform its critical functions including localization 
and mapping. In a 3D space, a robot pose refers to its attitude 
(roll, pitch, yaw angles) and position (X, Y, Z coordinates). 
This is referred to as 6D pose. In an environment without the 
support of navigational infrastructure (GPS, active beacons, 
etc.), a robot may calculate its pose via dead reckoning by 
using data from an Inertial Measurement Unit (IMU) and 
wheel odometry or by tracking the features detected by its 
vision sensor in the operating environment. The former is a 
proprioceptive approach as it does not use any external 
reference and the latter is an exteroceptive one as it tracks 
environmental features (external references) over time. The 
measurement accuracy of an IMU is subject to bias drifts of 
its motion sensors (accelerometers) and rotation sensors 
(gyros) that accrue pose errors in over time. Wheel odometry 
alone cannot provide a reliable estimate of movement due to 
wheel slip. A PE system based on an IMU and/or wheel 
odometry may accumulate a large pose error with time and 
may completely fail in case of excessive wheel slip (e.g., 
when a robot moves on loose soil).  

Exteroceptive PE methods are less prone to these problems 
as they use static external references to determine changes in 
robot pose. LADARs [1]-[3] have been widely used for PE. A 
3D LADAR [3] is currently costly and is not suitable for a 
small robot due to its large dimension. When a 2D LADAR is 

used for 6D pose estimation, a scanning mechanism is needed 
to rotate the entire sensor for generating 3D data [1], [2]. Such 
a system has a low frame rate and is often too bulky for a 
small robot. Most of the existing LADAR-based PE methods 
employ the Iterative Closest Point (ICP) or its variants 
[1]-[3]. The ICP approach requires an initial guess of pose 
that moves the data close enough to the model to alleviate the 
local minimum problem. It cannot find a solution when the 
environment is featureless (e.g., a flat surface).  
 Visual features are often more available in the operating 
environment of a robot. They may even exist in a 
geometrically featureless environment. The representative 
approach to PE with visual features is Visual Odometry (VO) 
[4]-[9], which employs a stereovision system to estimate 
ego-motion by detecting and tracking the visual features in 
the stereo image pairs from frame to frame. The 3D positions 
of the features in each frame are determined by stereo 
matching. Feature tracking is performed by spatial correlation 
search. The search methods [4], [5] require an initial estimate 
of the motion that is obtained from wheel odometry and 
inertial sensors. Feature matching can also been achieved by 
using feature descriptors [6], [7]. This feature matching 
approach does not perform a spatial correlation search and 
thus does not require an initial motion estimate. However the 
feature descriptors need to be salient and robust to scale 
change and rotation in order for the VO method to work well 
with a large frame-to-frame movement. Although the VO 
method is suitable for a small robot, the use of a stereovision 
system imposes significant limitations on autonomous robot 
navigation. First, the depth measurement error of a 
stereovision system grows quadratically with the true 
distance, meaning that the VO’s PE accuracy drop off quickly 
with increasing distances of feature points. Second, 
stereovision systems cannot produce a fully dense set of depth 
data of the scene due to featureless image regions. As a result, 
stereovision data is not reliable for obstacle avoidance. This 
problem is usually resolved by using additional perception 
sensor(s) such as a LADAR. This multi-sensor approach is, 
however, not suitable for navigating a small robot. 

Commercially available Flash LIDAR now has sufficient 
accuracy for robotic application. A Flash LIDAR 
simultaneously produces intensity and range images of the 
scene at a video frame rate. It has the following advantages 
over stereovision systems: (1) it measures depth by 
Time-Of-Flight (TOF) and therefore has consistent 
measurement accuracy in its full range; and (2) it may return 
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fully dense depth data across its field-of-view. The 
commercially available Flash LIDAR includes the 
SwissRanger [17] and TigerEye 3D [18] cameras. In [11], 
[12], a sensor suite that pairs a SwissRanger 3D camera with a 
conventional video camera was used for PE. SIFT features 
were extracted from the video image. The corresponding 3D 
points of the SwissRanger’s range data were determined by 
an interpolation and search process. The data association 
process incurs computation time and a precise pixel-to-pixel 
match cannot be achieved. To overcome these drawbacks, the 
authors of this paper introduced a PE method [14] based on a 
single 3D camera�the SwissRanger SR4000. In the PE 
method, SIFT features were extracted from the SR4000’s 
intensity image and the features’ corresponding range data 
were used as the 3D data points for PE. This is a precise 
pixel-to-pixel match and no search process is needed. Since 
the method simultaneously uses Visual and Range data for 
PE, it was termed VR-Odometry (VRO). The work in [14] 
only presents a proof of concept study of the VRO that uses 
the sensor’s raw data. A similar PE method was presented in 
[13] where the SURF descriptor was employed for feature 
detection and matching. The motivation was that the SURF 
descriptor has similar performance to SIFT but is much faster 
according to the recent study [15]. However, it is not clear 
from [13] if the PE accuracy and computational cost of the 
SURF-based method are satisfactory. In [11], [13] the 
SwissRanger SR-2 and SR-3000 were characterized. The 
uncertainty of each pixel’s range measurement was related to 
its intensity value and the bias of the range measurement was 
related to the intensity and true range values. These statistical 
data were then used by an information filter to estimate the 
robot pose over multiple time steps. 

In this paper we investigate: (1) the impacts of the 
SR4000’s noises to the VRO’s PE error; and (2) the 
performances of the SIFT and SURF descriptors in terms of 
PE error and computational cost. The objective is to allow the 
VRO to provide sufficiently accurate PE for a portable blind 
navigational device [14] that uses a SR4000 instead of a 
Kinect sensor due to the SR4000’s smaller footprint.  

This paper is organized as follows. Section II briefly 
introduces the SwissRanger SR4000. Section III gives an 
overview on the VRO method. Section IV describes the 
experimental setup for the benchmark study. Section V 
characterizes the noises of the sensor’s data. Section VI 
presents a simulation approach for determining the minimum 
number of matched points required for the VRO. Section VII 
evaluates the performance of the SIFT-based VRO with 
individual movements. Section VIII compares the SIFT and 
SURF extractors’ performances in the context of PE. Section 
IX further evaluates the SIFT-based VRO’s PE performance. 
The paper is concluded in Section X.  

II. SWISSRANGER SR4000 
The SwissRanger SR4000 (Fig. 1(b)) is a 3D TOF camera. 

The SR4000 operates like a 2D digital camera, but measures 
the range to all objects in its field of view (the scene). The 

camera illuminates the scene with modulated infrared light 
and focuses the image onto the 3D camera’s Focal Plane 
Array (FPA). Each pixel on the FPA measures the TOF, and 
thus the distance, based on phase shift. The final result is a 
fully dense range image. The camera also produces an 
intensity image simultaneously. The camera is small in size 
(65×65×68 mm3). But it is able to produce dense 3D data 
points (176×144 =25,344 points) per frame at a frame rate up 
to 50 Hz. It has a 43˚ (horizontal) by 34˚ (vertical) field of 
view and a 0.24˚ angular resolution.    

III. VR-ODOMETRY 
The VRO employs a local feature detector to extract 

features in current intensity image and match them to the 
features in the next intensity image by the feature descriptors. 
As the features’ 3D coordinates are known, the 
feature-matching process results in two 3D data sets, }{ ip
and }{ iq  for Ni ,,1�� . The rotation and translation 
matrices, R and T , between these two image frames can be 
determined by minimizing the error residual 
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i ii TRqpe . This least-squares data fitting 
problem can be solved by the Singular Value Decomposition 
(SVD) method as described in [16]. As the feature-matching 
based on the local descriptors may result in incorrect 
correspondences (outliers), a RANSAC (Random Sample 
Consensus) process is implemented to reject the outliers. The 
entire method is as follows:  
1) Detect features in two consecutive intensity images, find 
the matched features based on the feature descriptors and 
form the corresponding 3D data sets }{ ip  and }{ iq . Repeat 
steps 2 & 3 for k, � = 1,⋯ , �, times until a termination 
criteria is met. 
2) Draw a sample by randomly selecting 4 associated 
point-pairs from the two data sets to form }{ mp  and }{ mq  
for 4,,1��m . Then find the least-squares rotation and 
translation matrices ( kR and kT ) for }{ mp  and }{ mq .  
3) Project the entire data set }{ iq  onto }{ ip  by the found 

transformation and compute error 22
kikii TqRpe ��� ; 

Ni ,,1��  for each point-pair. A threshold � is used to score 
the support kS  for this transformation ( kR  and kT ): kS  is 

incremented once for each ��2
ie .    

4) The transformation with the highest score is recorded. 
The corresponding data sets }{ jp  and }{ jq  for kSj ,,1��  
(called inliers, of which each data-pair past the threshold test 
of step 3) are selected and used to compute the maximum 
likelihood estimate of R̂ and T̂  of the camera by the SVD 
method. The camera’s Euler angles are computed from R̂  
and its translation is determined by T̂ . 

Given the true inlier ratio �, the minimum number of 
repetitions required to ensure, with some level of confidence 
η, that data sets }{ jp  and }{ jq  are outlier-free, can be 
computed by  
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This number is then used as general termination criteria 
[19] to terminate the RANSAC process. In this paper m=4 
and η=0.99 are used. In fact, the true inlier ratio ε is a priori 
unknown. An estimate on this ratio can be found by using the 
sample which currently has the largest support. This estimate 
is then updated as the RANSAC process proceeds. The total 
computational time of the RANSAC process is determined by 
the values of Kmin and N (the total number of the 3D data 
points). Figure 1(a) depicts the matched features that are 
classified into inlier (green) and outlier (red) by the RANSAC 
process.  

IV. EXPERIMENTAL SETUP 
An in-house built motion table (Fig. 1(b)) is used to 

produce ground truth rotation and translation. The motion 
table consists of a TRACLabs Biclops pan/tilt unit and a 
Techno Linear Slider driven by a servo motor. The motion 
table has a ±60	 tilt and ±180	 pan ranges with an angular 
resolution of 0.018	. It has a 3-meter linear movement range 
with ~0.01 mm resolution. 

A desktop computer with a 3.30GHz AMD Phenom™ II 
X6 1000T processor and 4 GB memory is used to process the 
intensity and range data. All statistical results are computed 
using 540 data frames. This sample number is determined 
based on the Central Limit Theorem and the statistical results 
of the VRO in our previous paper [10]. 

V. NOISE ANALYSIS 
In our previous work [10], we have demonstrated that the 

PE error of the VRO using raw sensor data follows a Gaussian 
distribution. Noises in the SR4000’s range data directly 
contribute to the VRO error while noises in the intensity data 
may result in error in feature detection and eventually 
produce error in PE. To analyze the noises of the SR4000’s 
intensity and range data, we take 540 image frames from the 
sensor in a typical office environment and plot the 
distributions of the intensity and range values of each pixel. It 
is found that both intensity and range values follow Gaussian 
distributions, meaning that the noises in the intensity and 
range data are Gaussian noises.  

A 3×3 low-pass Gaussian filter (
=1) is applied to the 
intensity and range images to reduce the noises. The 
distribution plots of the data before and after applying the 
Gaussian filter demonstrates that the filter substantially 

reduces the standard deviations with slight changes in the 
mean values. To quantify the noise levels of the raw and 
filtered data, we compute the noise ratio (i.e., the ratio of the 
standard deviation to the mean) of each pixel in the intensity 
and range data. Table I shows the maximum, mean and 
minimum noise ratios in a typical data frame. It can be seen 
that the Gaussian filter reduces the overall noise levels (the 
mean noise ratio) of the intensity and range data by 57% and 
63%, respectively. We have carried out experiments with 
different scenes and the results are similar.  

VI. MINIMUM NUMBER OF MATCHED POINTS FOR VRO  
In theory, the pose change between two image frames can 

be computed from three matched data points. This scheme 
only works well with noise-free range data. When the range 
data contain noise, more matched data points are required to 
attain a sufficiently small PE error. In this work, this issue is 
investigated through simulation experiments.  

Let a noise-free point set be denoted by {pi}; Ni ,,1�� . A 
predetermined transformation, i.e., a pose change given by (θ, 
ϕ, ψ, x, y, z), is applied to {pi} to generate a new data set {qi}. 
This means that data points in {pi} are matched to those in 
{qi} by the given rotation and translation. Gaussian noise is 
then added to each point in {pi} and {qi}. This produces data 
sets {���} and {���} that simulate the SR4000’s range data. The 
transformation matrices, �� and ��, between {���} and {���} 
can be computed by the SVD method described in Section III. 
The corresponding pose change (��, �, ��, x�, y�, z�) are then 
determined and treated as the pose measurement. To reflect 
the noise characteristics of the SR4000’s range data, we used 
the sensor’s maximum, mean and minimum noise ratios (in 
Table I) to generate the simulated range data. We then 
computed the pose measurement error �=(��, �θ, ��, �x, �y, 
�z,)=(��-�, �-, ��-ψ, x�-x, y�-y, z�-z) for each case using 
different number of matched points. Each element of � and 
the absolute value of the derivative |d�| are plotted against the 
number of matched points that are used for computing the 
pose change.  

The results show that: (1) Each element of � decreases 
gradually with increasing number of matched points; and (2) 
each element of |d�| decreases with the number of matched 
points. More importantly, |d��|, |d�| and |d��| stay within the 
SR4000’s angular resolution (0.24	) and |d�x|, |d�y| and |d�z| 
are within the SR4000’s absolute accuracy (10 mm) when the 
number of matched points is not smaller than 12. Therefore, 
12 are selected as the Minimum Number of Matched Points 
(MNMP) for PE. Figure 2 shows the pitch derivative plots. As 

  
(a)                                                   (b)          

Fig. 1 (a) RANSAC process for outlier removal: Features matched by SIFT 
descriptor consists of inliers (in green) and outliers (in red) which is 
identified and removed by the RANSAC process. (b) Experimental setup: the 
SwissRanger SR4000 mounted on the motion table 

Match after SIFT

Z 
Y 

X 

TABLE I  NOISE RATIO OF RAW AND FILTERED SR4000 DATA 
Noise Ratio (%) Raw Data Filtered Data Noise Reduction 

 
Intensity 

Maximum 20.66 9.88    52% 
Mean  2.28 0.99 57% 
Minimum  0.47 0.42 11% 

 
Range 

Maximum 14.66 7.96 46% 
Mean  1.50 0.55 63% 
Minimum  0.31 0.12 61% 

The maximum, mean and minimum is computed from 25344 (176×144) pixels. 
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the similar results are shown in other movements, the other 
plots are omitted for conciseness. 

It is noted that the MNMP depends on the threshold values. 
A larger/smaller threshold value results in a smaller/larger 
MNMP. Decreasing the MNMP will increase the success rate 
of PE with a larger PE error. Therefore, the MNMP should be 
carefully selected according to the system specification. The 
MNMP may be used to indicate a failure of the VRO when 
the number of initial matched featured (based on the feature 
discriptors) is smaller than the MNMP. In this case, the VRO 
should skip the current frame of data and move to the next 
frame, or be replaced by an auxilliary PE means, if available. 

VII. PE ERROR AND COMPUTATIONAL TIME  

A. Accuracy and repeatability of VRO 
Since the Gaussian filter drastically reduces the noise of the 

SR4000’s data, it is anticipated that the filtering process 
substantially reduces the VRO’s PE error. Experiments are 
performed to examine the PE error (with/without the 
Gaussian filter) for each individual motion. The SIFT feature 
extractor is used in the experiments. In the first experiment, 
the SR4000 undergoes pitch movements over the range [3	, 
18	] (step size: 3	). 540 frames are captured before and after 
each pitch rotation for computing the pose change. Figure 3(a) 
shows the error bar plot of the pitch measurements.  

It can be observed that the use of the Gaussian filter 
resulted in a much better repeatability of pitch estimation: the 
standard deviation was reduced by 1.7~2.9 times. The 
Gaussian filter slightly shifts the mean error. This change is 
within [-0.3	, 0.3	]. It is small compared with the reduction in 
the standard deviation, which is 1.3	~2.9	. We carry out 
similar experiments to test the VRO errors with roll, yaw, X 
and Y movements. The result of X movement is depicted in 
Fig. 3(b).  

For roll measurement, the Gaussian filter slightly reduced 
the mean errors but retained similar standard deviations. Both 
the mean errors and standard deviations are within the 
SR4000’s angular resolution (0.24	). For yaw measurement, 
the Gaussian filter causes significant reductions in the 
standard deviations but slightly shifts the mean errors, a 
similar result as observed in the pitch measurement. Again, 
both the mean errors and standard deviations are within the 
SR4000’s angular resolution. One common feature in the 
pitch and yaw measurements is that the standard deviations 
tend to grow with increasing rotation angle.  

For X measurement, both the mean errors and standard 
deviations are reduced by the Gaussian filter. Their values are 
around the absolute accuracy of the SR4000 (±10 mm). The 
standard deviation of the VRO with Gaussian filter grows 
with increasing X movement. For Y measurement, the 
Gaussian filter lowers the standard deviations but slightly 
increases the mean errors. However, both of them are within 
the absolute accuracy of the SR4000. It can be observed that 
the measurement errors of X movements are larger than that 
of Y movements. This is because the same amount of 
movement in X axis results in a larger movement of features 
in the image plane (equivalent to a larger pitch or yaw 
movement) than it does in Y axis and hence a large 
measurement error.   
 The quantitative results of the measurement accuracy and 
repeatability of the VRO with the Gaussian filter are tabulated 
in Tables II and III. It is noted that for the 2nd group of data in 
Table II (i.e., the sensor undergoes pitch movements), some 
of the pitch/yaw measurements incur larger mean errors and 

TABLE II PE ERRORS IN ROTATION MEASUREMENT  
             MV: (�,
) 

TV: (�, , �) Roll �  (º) Pitch   (º) Yaw �  (º) 

(3, 0, 0) (0.17, 0.11) (0.06, 0.07) (0.04, 0.06) 
(6, 0, 0) (0.16, 0.10) (0.02, 0.06) (0.03, 0.07) 
(9, 0, 0) (0.07, 0.10) (0.07, 0.06) (0.05, 0.06) 
(12, 0, 0) (0.02, 0.11) (0.09, 0.07) (0.01, 0.07) 
(15, 0, 0) (0.00, 0.10) (0.05, 0.08) (0.11, 0.09) 
(18, 0, 0) (0.01, 0.11) (0.12, 0.08) (0.03, 0.07) 
(0, 3, 0) (0.07, 0.11) (0.30, 0.25) (0.05, 0.25) 
(0, 6, 0) (0.00, 0.13) (0.03, 0.31) (0.46, 0.33) 
(0, 9, 0) (0.07, 0.15) (0.27, 0.41) (0.56, 0.35) 
(0, 12, 0) (0.04, 0.17) (0.09, 0.46) (0.81, 0.42) 
(0, 15 0) (0.16, 0.21) (0.02, 0.56) (0.95, 0.49) 
(0, 18, 0) (0.14, 0.23) (0.29, 0.49) (0.61, 0.46) 
(0, 0, 3) (0.02, 0.07) (0.09, 0.13) (0.17, 0.11) 
(0, 0, 6) (0.02, 0.08) (0.09, 0.14) (0.21, 0.11) 
(0, 0, 9) (0.01, 0.08) (0.18, 0.16) (0.14, 0.16) 
(0, 0, 12) (0.03, 0.09) (0.18, 0.2) (0.15, 0.22) 
(0, 0, 15) (0.01, 0.12) (0.22, 0.22) (0.23, 0.27) 
(0, 0, 18) (0.01, 0.11) (0.2, 0.21) (0.17, 0.28) 

MV: Measured Values, TV: True Values, �: mean error, 
: standard deviation. 

 
Fig. 2 Derivative of PE error |d�| versus number of matched points under 
different noise levels. The solid red line is the SR4000’s angular resolution. 
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TABLE III PE ERRORS IN TRANSLATION MEASUREMENT  
             MV: (�,
) 

TV: (X, Y, Z) X  (mm) Y  (mm) Z (mm) 

(100, 0, 0) (9.8, 4.0) (0.4, 1.4) (3.3, 2.4) 
(200, 0, 0) (5.6, 5.5) (2.7, 1.7) (3.9, 2.9) 
(300, 0, 0) (10.5, 5.2) (3.4, 1.6) (7.7, 3.6) 
(400, 0, 0) (2.8, 8.9) (4.7, 2.7) (6.9, 6.8) 
(500, 0, 0) (3.4, 10.7) (5.5, 2.5) (0.8, 7.3) 
(0, 100, 0) (1.4, 2.8) (4.3, 1.7) (3.4, 2.7) 
(0, 200, 0) (2.8, 2.8) (6.2, 1.7) (2.5, 3.1) 
(0, 300, 0) (0.9, 2.7) (7.7, 1.8) (0.3, 3.5) 
(0, 400, 0) (3.3, 3.1) (9.5, 1.8) (3.3, 3.7) 
(0, 500, 0) (12.6, 4.8) (8.5, 2.5) (6.1, 4.9) 

MV: Measured Values, TV: True Values, �: mean error, 
: standard deviation 

(a) (b) 
Fig. 3 Error bars of pitch and X measurements. The mean error of each 
measurement is plotted with an error bar of ±1σ. σ is the standard deviation.  
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standard deviations. We find that this is because the data has 
larger noise ratios. We will further investigate this issue and 
attempt to improve the results in our future work.  

B. Computational time of VRO 
We find in our experiments that the Gaussian filter 

increases the number of SIFT features in each filtered 
intensity image and resulted in a much larger number of 
initially matched features with a higher inlier ratio. Therefore, 
the computational time for feature extraction increases. The 
RANSAC computational time decreased due to higher inlier 
ratio. However, it accounts for a much smaller portion of the 
total VRO computational time. As a result, the use of the 
Gaussian filter results in a much higher computational time 
for the VRO. Figure 4 shows the numbers of inliers and 
outliers and computational times of the feature extraction and 
RANSAC processes of the VRO with/without the Gaussian 
filter in the cases with various pitch movements.  

VIII.   PERFORMANCES OF FEATURE EXTRACTORS 
The SURF is a representative robust feature descriptor with 

a much better computational efficiency than the SIFT. It has 
been used for robot PE in the literature [13]. However, no 
quantitative study on its PE performance has been reported so 
far. In this section, we compare the performance of the 
SURF-based VRO with that of the SIFT-based VRO. In both 
cases, the Gaussian filter was used to reduce the noise ratios 
of the data. 

A. Accuracy and repeatability 
We compare the two VROs’ mean errors and standard 

deviations through extensive experiments with individual 
movements (roll, pitch, yaw, X and Y). Figure 5 shows two of 
the experimental results. It can be observed that the 
SIFT-based VRO exhibits a much better accuracy and 
repeatability in PE. The only exception is the Y measurement 
where the SURF-based VRO has slightly smaller mean errors 

and the SIFT-based VRO has smaller standard deviation. 
However, both methods’ PE errors are within the SR4000 
absolute accuracy. This means that they have similar 
performance in measuring Y movement.  

A closer examination into the SURF-based VRO reveals 
that: (1) For the measurements in Y movements, the SURF 
feature extractor produces sufficient number of inliers and 
thus results in PE errors comparable to that of the SIFT-based 
VRO; (2) In all other cases, the number of inliers produced by 
the SURF feature extractor is lower than the MNMP and 
therefore, the use of the SURF descriptors results in much 
larger PE errors. 

B. Computational time 
Figure 6 depicts the inliers and outlier numbers and the run 

time of the SIFT-based and SURF-based VROs under the 
conditions with pitch movements in range [3	, 18	]. It can be 
seen that the SIFT extractor produced many more features 
with a much higher inlier ratio than the SURF counterpart for 
each pitch movement. Also, the computational time of the 
SURF is ~200 ms smaller than that of the SIFT. For the 
SURF-based VRO, the RANSAC computational time may 
drastically increase and outnumber the computational time of 
feature extraction when the inlier ratio is very low (e.g., the 
case with 18	 pitch movement). We obtain similar results in 
the cases with other individual movements.  

In general, the use of the SURF may save some 
computational time in the feature extraction for the VRO at an 
unacceptable cost of losing too much PE accuracy and 
repeatability.  

The thresholds of the SIFT and SURF detectors used in the 
experiments are 0.0067 and 0.0001, respectively. By 
decreasing the Hessian response threshold of SURF, we got a 
larger number of SURF features. But the inlier number did 
not increase proportionally. This resulted in a lower inlier 
ratio and thus an increased RANSAC computation time. The 
increase of feature number did not improve pose estimation 
performance. We found similar phenomenon with SIFT 
detector. This indicates that a feature detector’s robustness to 
scale and rotation is the determining factor of its pose 
estimation performance. 

IX. PE ERROR WITH COMBINATORY MOTION 
Since the SIFT feature extractor outperforms the SURF 

extractor, the SIFT-based VRO was selected for PE. Its PE 

Fig. 4 Inlier and outlier numbers and the computational time of the 
SIFT-based VRO with/without the Gaussian filter  
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Fig. 6 Inlier and outlier numbers (top) and the computational time (bottom) of 
the SIFT-based and SURF-based VROs with pitch movements. The numbers 
on top of the bar graph in the left are inlier ratios in percentage. 
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Fig. 5 Comparison of the SIFT-based and SURF-based VROs’ errors in pitch 
and X movement 
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accuracy and repeatability are further investigated under 
conditions with combinatory motion (both rotation and 
translation).  The results are tabulated in tables IV & V.  

The first combinatory motion consists of pitch, yaw and Y 
movements. Like the results with individual movements (in 
table II), most of the mean errors and standard deviations of 
the SIFT-based VRO are within the SR4000’s angular 
resolution and absolute accuracy.  

The second combinatory motion consists of pitch, yaw and 
X movements. While most of the standard deviations are 
within the sensor’s angular resolution and absolute accuracy, 
many of the mean errors go beyond the boundaries. This 
conforms to our earlier finding that an X movement results in 
a larger PE error than a Y movement does. However, the 
overall PE accuracy and repeatability are still good.      

Since a robot’s forward movement (along Y axis) usually 
dominates its side movement (along X axis), we believe that 
the measurement performance in Table IV has more 
significant meaning to robot pose estimation.  

X. CONCLUSIONS 
In this paper, we have evaluated the performance of the 

SR4000 based pose estimation method, called VR-Odometry 
(VRO). We first evaluated the noise ratios of the sensor’s raw 
data, including intensity and range data, and applied a 
Gaussian filter to reduce the noises of the data. We then 
characterized the noise characteristics of the filtered data. 
Based on the characteristics, we determined the minimum 
number of matched points that allows for a sufficiently small 
PE error. Our experimental study has demonstrated that the 
Gaussian filtering substantially improves the VRO’s 
measurement accuracy and repeatability. To select a suitable 
feature extractor for the VRO, we evaluated the PE 
performances of the SIFT and SURF descriptors and the 
experimental results revealed that the SIFT descriptor 
outperformed the SURF descriptor in PE. Our results have 
also demonstrated that the SIFT-based VRO’s PE accuracy 
and repeatability mostly stay within the SR4000’s angular 
resolution and absolute accuracy when the sensor undergoes 
an individual rotation/translation. This is also true for the case 
with a combinatory movement if the linear movement along Y 
axis prevails (the usual case in robot navigation). The VRO 
method is well suited for small robot and robotic device 

where both size and PE accuracy are determining factors. 
In terms of future research directions, we will look into the 

possibility of reducing the computational time for feature 
extraction. We will also develop a method to increase the 
inlier ratio of the matched features by removing the majority 
of the outliers through a non-RANSAC procedure. This may 
speed up or even remove the RANSAC process.  
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TABLE IV MEASUREMENT OF ROTATION (, �) AND TRANSLATION (Y) 
             MV: (�,
) 

TV: (�, , Y) Pitch   (º) Yaw �  (º) Y (mm) 

(-3, 9, 390) (0.45, 0.07) (0.12, 0.06) (1.23, 1.12) 
(-6, 3, 196) (0.31, 0.07) (0.02, 0.07) (3.52, 1.49) 

(-9, 12, 386) (0.15, 0.22) (0.16, 0.20) (3.61, 1.93) 
(-12, 6, 593) (0.28, 0.41) (0.26, 0.57) (10.90, 4.07) 

MV: Measured Values, TV: True Values, �: mean error, 
: standard deviation.  

TABLE V MEASUREMENT OF ROTATION (, �) AND TRANSLATION (X) 
             MV: (�,
) 

TV: (�, , X) Pitch   (º) Yaw �  (º) X (mm) 

(3, 12, 99) (0.05, 0.08) (0.55, 0.13) (13.82, 5.05) 
(6, 9, 198) (0.28, 0.10) (0.78, 0.21) (19.41, 6.91) 
(9, 6, 287) (0.16, 0.20) (0.80, 0.35) (22.17, 11.83) 
(12, 3, 395) (0.22, 0.20) (0.90, 0.39) (28.75, 14.26) 

MV: Measured Values, TV: True Values, �: mean error, 
: standard deviation.  
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